Course Title: Multivariate Calculus

The figures in the margin indicate full marks

Symbols and Notations have their usual meaning

1. Answer any five of the following questions:
$2 \times 5=10$
(a) Examine the continuity of the function $f(x, y)$ at the point $(0,0)$, where

$$
\begin{aligned}
f(x, y) & =\frac{x+y}{x^{2}+y^{2}}, & & \text { when }(x, y) \neq(0,0) \\
& =0, & & \text { when }(x, y)=(0,0)
\end{aligned}
$$

(b) If $u=\varphi(x+c t)+\psi(x-c t)$, then show that $\frac{\partial^{2} u}{\partial t^{2}}=c^{2} \frac{\partial^{2} u}{\partial x^{2}}$ where φ and ψ are two differentiable functions and c is a constant.
(c) Show that the set $S=\left\{(x, y): x^{2}+y^{2}<1\right\}$ is an open set which is not closed.
(d) If $z=x^{3}-x y+y^{3}, x=r \cos \theta, y=r \sin \theta$, find $\frac{\partial z}{\partial r}$ and $\frac{\partial z}{\partial \theta}$.
(e) For what value of a, the vector $\overrightarrow{\mathrm{F}}=x z \hat{\imath}+x y z \hat{\jmath}+a y^{2} \hat{k}$ is irrotational?
(f) Find the work done in moving a particle in the force field $\vec{F}=2 x^{2} \hat{\imath}+(x z+y) \hat{\jmath}+3 z \hat{k}$ along the curve $x=2 t, y=t, z=t^{2}$ from $t=0$ to $t=1$.
(g) Find the maximum value of the directional derivative of $\varnothing=x y^{2}+2 y z-3 x^{3} z^{2}$ at $(1,-1,1)$.
(h) Find the circulation of \vec{F} around the curve C, where $\vec{F}=\left(2 x+y^{2}\right) \hat{\imath}+(3 y-4 x) \hat{\jmath}$ and C is the curve $y^{2}=x$ from $(1,1)$ to $(0,0)$.
2. Answer any four of the following questions:
(a) i) If $z=f(x, y)$ where $x=e^{u} \cos v, y=e^{u} \sin v$, show that

$$
y \frac{\partial z}{\partial u}+x \frac{\partial z}{\partial v}=e^{2 u} \frac{\partial z}{\partial y}
$$

ii) Find the value of t so that the vector $\vec{F}=(x+3 y) \hat{\imath}+(y-2 z) \hat{\jmath}-(x+t z) \hat{k}$ is solenoidal.
(b) Evaluate

$$
\iint_{R}\left[2 a^{2}-2 a(x+y)-\left(x^{2}+y^{2}\right)\right] d x d y
$$

where R is the region bounded by the circle $x^{2}+y^{2}+2 a(x+y)=2 a^{2}$.
(c) Verify Green's theorem in the plane for

$$
\oint_{C}\left[\left(x y+y^{2}\right) d x+x^{2} d y\right],
$$

where C is the closed curve (boundary) of the region bounded by $y=x$ and $y=x^{2}$, taken counterclockwise.
(d) If $f(x, y)=x y$ when $|x| \geq|y|$

$$
=-x y \text { when }|x|<|y| \text {. }
$$

Show that $f_{x y}(0,0) \neq f_{y x}(0,0)$.
(e) Evaluate the surface integral $\iint \vec{F} . \hat{n} d S$ where $\vec{F}=z x y \hat{\imath}+y z \hat{\jmath}+x \hat{k}$ and S is the surface of the sphere $x^{2}+y^{2}+z^{2}=4$ in the second octant.
(f) Prove that a vector field is conservative if and only if it is irrotational.
3. Answer any one of the following questions:
a) i) State Gauss' divergence theorem and use it to evaluate

$$
\iint_{S} \vec{A} \cdot \hat{n} d S
$$

where $\vec{A}=x^{3} \hat{\imath}+x^{2} y \hat{\jmath}+x^{2} z \hat{k}$ and S is the closed surface bounded by the cylinder $x^{2}+y^{2}=4$ and the planes $z=0$ and $z=2$.
ii) If \vec{A} is a differentiable vector function and φ is a differentiable scalar function, then show that $\quad \vec{\nabla} \times(\varphi \vec{A})=(\vec{\nabla} \varphi) \times \vec{A}+\varphi(\vec{\nabla} \times \vec{A})$.
b) (i) If \vec{F} is a continuous vector function defined on a smooth surface S then prove that $\iint_{S} \vec{F} . \hat{n} d S=\iint_{R} \vec{F} \cdot \hat{n} \frac{d x d y}{|n \hat{n} \cdot \hat{\mid}|}$, provided $\hat{n} . \hat{k} \neq 0$ and R is the orthogonal projection of S on the $x y$ plane.
(ii) Find the maximum or minimum value of $f(x, y, z)=x^{m} y^{n} z^{p}$ subject to the condition $\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=1$ by using the method of Lagranges multiplier.

